
Generic traversals

Roman Cheplyaka

Foldable tuples

> length (3,4)

Foldable tuples

Foldable tuples

> fmap show [1..5]
["1","2","3","4","5"]

> fmap show (3,4)
(3,"4")

From tuples-homogenous-h98:

> import Data.Tuple.Homogenous
> length (Tuple2 (3,4))
2
> fmap show (Tuple2 (3,4))
Tuple2 {untuple2 = ("3","4")}

Foldable tuples

> fmap show [1..5]
["1","2","3","4","5"]

> fmap show (3,4)
(3,"4")

From tuples-homogenous-h98:

> import Data.Tuple.Homogenous
> length (Tuple2 (3,4))
2
> fmap show (Tuple2 (3,4))
Tuple2 {untuple2 = ("3","4")}

Homogenous tuples

let
temp_high_F = to_fahrenheit temp_high_C
temp_low_F = to_fahrenheit temp_low_C

let
[temp_high_F, temp_low_F] =

map to_fahrenheit [temp_high_C, temp_low_C]

let
Tuple2 (temp_high_F, temp_low_F) =

fmap to_fahrenheit (Tuple2 (temp_high_C, temp_low_C))

Heterogeneous length

class Lengthy a where
length :: a -> Int

instance Lengthy (a, b) where
length = 2

Heterogeneous length

import Data.Data
import Data.Functor.Const

length :: Data a => a -> Int
length =

getConst .
gfoldl (\(Const c) _ -> Const (c+1)) (const 0)

> length (3,4)
2

> length [1..10]

Understanding gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

«Trying to understand the type of gfoldl directly can lead to brain
damage. It is easier to see what the instances look like.»
— Ralf Lämmel & Simon Peyton Jones

Understanding gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

newtype Const a b = Const { getConst :: a }

length :: Data a => a -> Int
length =

getConst .
gfoldl (\(Const c) _ -> Const (c+1)) (const 0)

Understanding gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

instance Data a => Data [a] where
gfoldl f z = \case

[] -> z []
x:xs -> z (:) `f` x `f` xs

Fixing gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

instance Data a => Data [a] where
gfoldl f z = \case

[] -> z []
x:xs -> z (:) `f` x `f` (gfoldl f z xs)

Fixing gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

instance Data a => Data [a] where
gfoldl f z = \case

[] -> z []
[x1] -> z (\x1 -> [x1]) `f` x1
[x1,x2] -> z (\x1 x2 -> [x1, x2]) `f` x1 `f` x2
[x1,x2,x3] -> z (\x1 x2 x3 -> [x1, x2, x3])
`f` x1 `f` x2 `f` x3

Arriving at gtraverse

Understanding gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

instance Data a => Data [a] where
gfoldl f pure = \case

[] -> pure []
x:xs -> pure (:) `f` x `f` xs

instance Traversable [a] where
traverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> traverse g xs

Understanding gfoldl

class Data a where
gfoldl

:: (forall d. Data d => d -> c d)
-> (forall d b. c (d -> b) -> c d -> c b)
-> (forall g. g -> c g)
-> a -> c a

instance Data a => Data [a] where
gfoldl g (<*>) pure = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> g xs

instance Traversable [a] where
traverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> traverse g xs

Understanding gfoldl

class Data a where
gtraverse

:: Applicative c
=> (forall d . Data d => d -> c d)
-> a -> c a

instance Data a => Data [a] where
gtraverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> g xs

instance Traversable [a] where
traverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> traverse g xs

Fixing gfoldl

class Data a where
gtraverse

:: Applicative c
=> (forall d . Data d => d -> c d)
-> a -> c a

instance Data a => Data [a] where
gtraverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> gtraverse g xs

instance Traversable [a] where
traverse g = \case

[] -> pure []
x:xs -> pure (:) <*> g x <*> traverse g xs

Relationship between gtraverse and gfoldl

gtraverse from gfoldl

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

gtraverse
:: Applicative c
=> (forall d . Data d => d -> c d)
-> a -> c a

gtraverse f = gfoldl g pure
where
g acc x = acc <*> f x

gfoldl from gtraverse

class Data a where
gfoldl

:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> a -> c a

gtraverse
:: Applicative c
=> (forall d . Data d => d -> c d)
-> a -> c a

gfoldl f z = _ -- ???

go one level down

gfoldl

gtraverse
= foldl

?

go one level down

gfoldl

gtraverse
= foldl

foldMap

go one level down

class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m

foldl :: (b -> a -> b) -> b -> t a -> b

foldl f z t =
appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z

go one level down

class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m

foldl :: (b -> a -> b) -> b -> t a -> b

foldl f z t =
appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z

go one level down

class Foldable t where
foldMap :: Monoid m => (a -> m) -> t a -> m

foldl :: (b -> a -> b) -> b -> t a -> b

foldl f z =
List.foldl f z . foldMap (\x -> [x])

go back up

data Free f a where
Pure :: a -> Free f a
Ap :: Free f (a -> b) -> f a -> Free f b

gfoldl f z = foldAp f z . gtraverse (liftAp . I)

foldAp
:: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> Ap I a -> c a

foldAp f z (Pure x) = z x
foldAp f z (Ap (I x) k) = (foldAp f z k) `f` x

Many Data instances

class Data a where
gtraverse

:: Applicative c
=> (forall d . Data d => d -> c d)
-> a -> c a

instance (Data a, Data b) => Data (a,b) where
gtraverse f (a,b) = (,) <$> f a <*> f b

instance Data a => Data (a,b) where
gtraverse f (a,b) = (,) <$> f a <*> pure b

instance Data b => Data (a,b) where
gtraverse f (a,b) = (,) <$> pure a <*> f b

Many Data instances

«All problems in Haskell can be solved by adding another type
parameter»

class Data (c :: * -> Constraint) a where
gtraverse

:: (Applicative f)
=> (forall d . c d => d -> f d)
-> a -> f a

	Arriving at gtraverse
	Relationship between gtraverse and gfoldl

