Applicative regular expressions

Roman Cheplyaka

April 20, 2012
Dutch HUG Day

Intro

Two uses of regular expressions:
m Recognition

B grep
m search in text editors
m |exer generators

m Parsing

Capture groups

Example: a regex for URLs

(http|ftp):// (L. /TN D+ /1) /(L /1+))+/7?

A better approach: parsing combinators

Regular languages Applicative functors
Language concatenation | <x>

Language union <|>

Kleene star many

data Protocol = HTTP | FTP
data URL = URL Protocol [String] [String]

url :: RE Char URL
url = URL <$> protocol <* string "://" <*> host <*> path

protocol :: RE Char Protocol
host, path :: RE Char [String]
protocol = HTTP <$ string "http”
<|> FTP <$ string "ftp"

host = (:) <$> s <#> some (sym '.' *> s)

where s = some $ psym $ not . (‘elem* ['.",'/'])
path = some (sym '/' %> s)

where s = some $ psym $ not . (== '/")

Comparison

Comparison with monadic parsing libraries:
m better complexity
m better memory usage
m incremental parsing
m longest match

Perl vs POSIX

Perl vs POSIX semantics
m Perl for inner matches
m POSIX or Perl for the whole match

Challenges

Type safety vs speed

Current state

m Available on hackage and github
m Feature-full
m Performance needs some improvement

Where we want to get

Dominate the world
... of regex libraries for Haskell

