
Applicative regular expressions

Roman Cheplyaka

April 20, 2012
Dutch HUG Day

Intro

Two uses of regular expressions:
Recognition

grep
search in text editors
lexer generators

Parsing

Capture groups

Example: a regex for URLs

(http|ftp)://(([^./]+)\.)+([^./]+)(/([^/]+))+/?

Combinators

A better approach: parsing combinators

Regular languages Applicative functors
Language concatenation <*>

Language union <|>

Kleene star many

Example

data Protocol = HTTP | FTP
data URL = URL Protocol [String] [String]

url :: RE Char URL
url = URL <$> protocol <* string "://" <*> host <*> path

protocol :: RE Char Protocol
host, path :: RE Char [String]
protocol = HTTP <$ string "http"

<|> FTP <$ string "ftp"
host = (:) <$> s <*> some (sym '.' *> s)

where s = some $ psym $ not . (`elem` ['.','/'])
path = some (sym '/' *> s)

where s = some $ psym $ not . (== '/')

Comparison

Comparison with monadic parsing libraries:
better complexity
better memory usage
incremental parsing
longest match

Perl vs POSIX

Perl vs POSIX semantics
Perl for inner matches
POSIX or Perl for the whole match

Challenges

Type safety vs speed

Current state

Available on hackage and github
Feature-full
Performance needs some improvement

Where we want to get

Dominate the world
... of regex libraries for Haskell

