
Describing contracts in Haskell

Roman Cheplyaka
Barclays Capital

May 26, 2011



Describing contracts in Haskell

Our clients are investors. What are their needs?



Describing contracts in Haskell

Investor #1:

I is sure that Microsoft stock will go up in a year
I wants to make money on his prediction
I buys Microsoft stock
I sells it in one year, earning (or losing) the difference in prices



Describing contracts in Haskell

Investor #2:

I is sure that Microsoft stock will go up in a year
I wants to make money on his prediction
I concerned about his possible losses
I ⇒ does not buy Microsoft stock



Describing contracts in Haskell

What can we offer?

I if the stock goes up, we pay the difference in prices
I otherwise, no payment happens

Mathematically

payout = max (S1 − S0, 0)



Describing contracts in Haskell

payout = max (S1 − S0, 0)

In Haskell:

payout :: Double -> Double -> Double
payout s0 s1 = max (s1 - s0) 0



Describing contracts in Haskell

payout :: Market -> Double
payout market =

let s0 = observe market "26-05-2011" "MSFT"
s1 = observe market "26-05-2012" "MSFT"

in max (s1 - s0) 0



Describing contracts in Haskell

Good:
I Unambiguously specifies the contract
I Allows to calculate the payoff when the contract expires

Bad:
I Can’t be executed before the contract expires



Describing contracts in Haskell

Things we want to know about the contract:
I Set of observation dates
I Set of underlying securities (eg. stocks)
I Points of discontinuities of the payoff function
I . . .



Describing contracts in Haskell

Solution:
I parse the program;
I analyse abstract syntax tree and extract the necessary

information



Describing contracts in Haskell

How to represent abstract syntax tree?

Haskell’s answer: Algebraic Data Types

I combine unions and structs from C
I resemble Backus-Naur form for the grammar



Describing contracts in Haskell

data Expr = EAdd Expr Expr
| ESub Expr Expr
| EMax Expr Expr
| EConst Double
| EAsset String
| EDate String
| EObserve Expr Expr



Describing contracts in Haskell

Representation of our contract:

EMax
(ESub

(EObserve (EDate "26-05-2012") (EAsset "MSFT"))
(EObserve (EDate "26-05-2011") (EAsset "MSFT"))

(EConst 0)



Describing contracts in Haskell

Extract stored values using pattern matching

listOfDates :: Expr -> [Date]
listOfDates e =

case e of
EDate date -> [date]
EAsset asset -> []
EConst x -> []

EAdd e1 e2 -> listOfDates e1 ++ listOfDates e2
ESub e1 e2 -> listOfDates e1 ++ listOfDates e2
EMax e1 e2 -> listOfDates e1 ++ listOfDates e2
...



Describing contracts in Haskell

Parsing is awkward. Can we avoid it?

payout market =
let s0 = observe market "26-05-2011" "MSFT"

s1 = observe market "26-05-2012" "MSFT"
in max (s1 - s0) 0

EMax
(ESub

(EObserve (EDate "26-05-2012") (EAsset "MSFT"))
(EObserve (EDate "26-05-2011") (EAsset "MSFT"))

(EConst 0)

Yes! Redefine the functions to generate the syntax tree.



Describing contracts in Haskell

Parsing is awkward. Can we avoid it?

payout market =
let s0 = observe market "26-05-2011" "MSFT"

s1 = observe market "26-05-2012" "MSFT"
in max (s1 - s0) 0

EMax
(ESub

(EObserve (EDate "26-05-2012") (EAsset "MSFT"))
(EObserve (EDate "26-05-2011") (EAsset "MSFT"))

(EConst 0)

Yes! Redefine the functions to generate the syntax tree.



Describing contracts in Haskell

Parsing is awkward. Can we avoid it?

payout market =
let s0 = observe market "26-05-2011" "MSFT"

s1 = observe market "26-05-2012" "MSFT"
in max (s1 - s0) 0

EMax
(ESub

(EObserve (EDate "26-05-2012") (EAsset "MSFT"))
(EObserve (EDate "26-05-2011") (EAsset "MSFT"))

(EConst 0)

Yes! Redefine the functions to generate the syntax tree.



Describing contracts in Haskell

Redefine the functions to generate the syntax tree.

max e1 e2 = EMax e1 e2
e1 + e2 = EAdd e1 e2
e1 - e2 = ESub e1 e2

observe date asset = EObserve date asset



Describing contracts in Haskell

We can even overload numeric and string literals!

instance Fractional Expr where
fromRational x = EConst (fromRational x)



Describing contracts in Haskell

Investor #3:

I is concerned about possible fluctuations
I wants to average the observations



Describing contracts in Haskell

payout =
let s0 = observe "26-05-2011" "MSFT"

s1 = observe "26-05-2012" "MSFT"
s2 = observe "26-06-2012" "MSFT"
s3 = observe "26-07-2012" "MSFT"
avg = (s1 + s2 + s3)/3

in max (avg - s0) 0

Good programmers don’t write code like this!



Describing contracts in Haskell

payout =
let s0 = observe "26-05-2011" "MSFT"

s1 = observe "26-05-2012" "MSFT"
s2 = observe "26-06-2012" "MSFT"
s3 = observe "26-07-2012" "MSFT"
avg = (s1 + s2 + s3)/3

in max (avg - s0) 0

Good programmers don’t write code like this!



Describing contracts in Haskell

foldl :: (a -> b -> a) -> a -> [b] -> a

sum :: [Double] -> Double
sum list = foldl (+) 0 list

length :: [Double] -> Double
length list = foldl (\acc x -> acc + 1) 0 list



Describing contracts in Haskell

foldl :: (a -> b -> a) -> a -> [b] -> a

sum :: [Double] -> Double
sum list = foldl (+) 0 list

length :: [Double] -> Double
length list = foldl (\acc x -> acc + 1) 0 list



Describing contracts in Haskell

foldl :: (a -> b -> a) -> a -> [b] -> a

sum :: [Double] -> Double
sum list = foldl (+) 0 list

length :: [Double] -> Double
length list = foldl (\acc x -> acc + 1) 0 list



Describing contracts in Haskell

foldl :: (a -> b -> a) -> a -> [b] -> a

sum :: [Expr] -> Expr
sum list = foldl (+) 0 list

length :: [Expr] -> Expr
length list = foldl (\acc x -> acc + 1) 0 list



Describing contracts in Haskell

payout =
let dates = ["26-05-2012",

"26-06-2012",
"26-07-2012"]

avg = sum dates / length dates
in max (avg - 12.0) 0



Describing contracts in Haskell

Task: print a mathematical formula that describes the contract

Large ASTs lead to large formulas

Solution: make foldl a part of our language!



Describing contracts in Haskell

Task: print a mathematical formula that describes the contract

Large ASTs lead to large formulas

Solution: make foldl a part of our language!



Describing contracts in Haskell

data Expr = ...
| EFoldl Function2 Expr [Expr]



Describing contracts in Haskell

data Expr = ...
| EVar VarId
| EFoldl Function2 Expr [Expr]

type Function2 = (VarId, VarId, Expr)

type VarId = Int



Describing contracts in Haskell

foldl f a xs = EFoldl (lambdaToFunction2 f) a xs

lambdaToFunction2 :: (Expr -> Expr -> Expr) -> Function2
lambdaToFunction2 f = ?

(plus extra care to avoid free variable capture)



Describing contracts in Haskell

foldl f a xs = EFoldl (lambdaToFunction2 f) a xs

lambdaToFunction2 :: (Expr -> Expr -> Expr) -> Function2
lambdaToFunction2 f =

(EVar 0, EVar 1, f (EVar 0) (EVar 1))

(plus extra care to avoid free variable capture)



Describing contracts in Haskell

foldl f a xs = EFoldl (lambdaToFunction2 f) a xs

lambdaToFunction2 :: (Expr -> Expr -> Expr) -> Function2
lambdaToFunction2 f =

(EVar 0, EVar 1, f (EVar 0) (EVar 1))

(plus extra care to avoid free variable capture)



Describing contracts in Haskell

observe (EAsset asset) (EDate date)

Can you spot the error?

Correct form:

observe (EDate date) (EAsset asset)

Can the compiler catch this?



Describing contracts in Haskell

observe (EAsset asset) (EDate date)

Can you spot the error?

Correct form:

observe (EDate date) (EAsset asset)

Can the compiler catch this?



Describing contracts in Haskell

newtype Date = Date Expr
newtype Asset = Asset Expr
newtype Number = Number Expr

observe :: Date -> Asset -> Number
observe (Date date) (Asset asset) =

Number (EObserve date asset)



Describing contracts in Haskell

FPF = Functional Payout Framework

Language + Set of tools (backends)

I Generate mathematical formulas
I Extract sets of dates and assets
I Analyse for discontinuities
I Generate C code for Monte-Carlo simulation
I ... and more

Frankau et al. “Going functional on exotic trades”



Describing contracts in Haskell

Using Haskell for a domain-specific language:
I higher-order functions
I no need in parsing
I strong static type system
I type inference
I rich overloading

All for free!



Describing contracts in Haskell

Why work at Barclays Capital?
I real-world usage of functional programming
I work among smart people
I solve interesting problems
I get immediate feedback on your work

Send your CV to Roman.Cheplyaka@BarclaysCapital.com


